REACTIVITY OF (3-CHLORO-2-METHYLENECYCLOALKYL)PALLADIUM CHLORIDE DIMERS: PD-ALLYL CLEAVAGE, SYNTHESIS OF (±)-13-METHYLTRIDECANOLIDE. William A. Donaldson* and Barbara S. Taylor

Department of Chemistry, Marguette University, Milwaukee, Wisconsin 53233

SUMMARY: The reactions of the title compounds under cleavage conditions affords the corresponding cycloalkenes as the major product. This methodology was used in the synthesis of 13-methyltridecanolide from cyclododecene.

The chloropalladation of Ω -methylenebicyclo[n.1.0]alkanes (1) quantitatively affords crystalline, air-stable (3-chloro-2-methylenecycloalkyl)palladium chloride dimers (2, eqn. 1).^{1,2} Compounds 1 may be prepared from the corresponding cyclic olefins 3 in good yield, based on consumed starting material.^{1,3} Because of the great potential for the elaboration of the π -allyl moiety, we have investigated the reactivity of compounds 2, as the final step in a methodology for overall ring homologation--functionalization of olefins 3. Recent conflicting accounts of the reactivity of 1,1-allylic diacetates (4) as potentially "1,1-doubly activated" π -allyls,^{4,5} have prompted us to report our initial results on the cleavage of compounds 2.

Perhaps the simplest reaction of π -allyl complexes which liberates the organic ligand is cleavage in methanolic potassium hydroxide,⁶ however the mechanism for Pd-allyl cleavage remains a matter of some controversy.⁷ We herein report on the π -allyl cleavage of a series of compounds (2).

The preparation of compounds 5 - 9 is reported elsewhere.^{1,2} These compounds were treated with 1<u>M</u> methanolic KOH (1h at 23°C, Xh at 50°C) with the following work up: filtration of the Pd(0) biproduct (which should be recovered), dilution with H_20 , extraction of the cloudy aqueous solution (CH₂Cl₂ or CHCl₃) and removal of the solvent under reduced pressure. The results are recorded in Table I. Yields are generally good, however the anticipated α -methoxy olefin was obtained only as a minor product. The major product was the corresponding methylcycloalkene and its exocyclic isomer indicating not only cleavage of the Pd-allyl bond but reduction of the C3-C1 bond, as well.

		Reaction		Products ^b [Reg. #]			
π-Ally	1 Complex	Conditions ^a	olefi	ins	α-methoxy olef	ins Yield	
5		4h [64% ^С СН ₃ [1453-25-4] [29	Сн ₂ 8% ^С 505-03-5]	сн ₃ 24% ^d	осн ₃ 4%	
6 2	H ₃ C	4h	27% ^e CH ₃ CH ₃ [81505-	сн ₃ ^{33%^e} сн ₃ -07-9] [76802	сн ₂ 10% ^f сн ₃ 29-4]	осн ₃ 45% ^g сн ₃ 30%	
7, 1	H.CI Paci,	2 4h	66% ^h	A	33% ⁱ	ч ^{ОСН3} 91%	
8	H H PdCI/2	[48; 4h	[15840-64	[4877-39-8] 98% ^j -9]	1%	осн _з 43% ^g	
9 ~	H CI PdCI/2	4h [71% ^k	[56133-38-1]	3% ¹	, осн ₃ 78%	

TABLE I. Cleavage of (3-Chloro-2-methylenecycloalkyl)Palladium Chloride Dimers.

^a 1<u>M</u> KOH/MeOH, 1h @ RT, Xh @ 50°C. ^b As % of total yield based on ¹H NMR integration (\pm 4%). Olefins identified by comparison to literature spectral data. ^C Ref. 18. ^d Identified by comparison with sample prepared by independent synthesis. Ref. 19. ^e Ref. 20. ^f Identified by comparison with sample prepared by independent synthesis. Ref. 21. ^g Low yield may be due to volatility of products. ^h Ref. 22. ⁱ Ref. 23. ^j Ref. 24. ^k Ref. 25. ^l Ref. 26.

We propose that the major product is formed via cleavage of complex 2 to afford the allylic chlorides 10a and 10b and Pd(0)(Scheme 1).⁸ Oxidative addition of the finely divided Pd(0) into the allylic chloride bond affords the new π -allyl complexes lla and llb. Subsequent cleavage of

the new complexes 11 under the reaction conditions would afford the major product.⁹ The preparation of π -allyl complexes from the reaction of Pd(0) with allylic halides is well precedented.¹⁰ These results demonstrate that the (3-chloro-2-methylenecycloalkyl)palladium complexes (2) may react as "1,3 doubly activated" π -allyls under cleavage conditions.

Scheme 2. Synthesis of 13-Methyltridecanolide.

The presence of the α -methoxy olefin as a minor product might arise from solvolysis of the allylic halides 10.¹¹ Alternatively, solvolysis of the C3 chloride in the precursor 2,¹² followed by cleavage of the resultant methoxy substituted π -allyl complex would also afford the α -methoxy olefin products. Experiments are in progress to examine the exact mechanistic details for the formation of all products.

Although the cleavage of compounds 2 would not constitute a good general route to the homologation of cycloalkenes 3, we have been able to apply this sequence to the synthesis of (\pm) -13methyl-tridecanolide (12) (Scheme 2), the major macrolide constituent of *Galbanum* resin (0.03%).¹³ The mixture of π -allyls 13a, 13b, and 13c(2.1 : 1.9 : 1.0) may be prepared from <u>trans</u>-cyclododecene (14) (81% yield, based on consumed 14).^{1b} Cleavage of the mixture (1M_KOH/MeOH, 50°C, 24h) followed by oxidation (mCPBA, CH_2Cl_2 , 23°C, 24h) gave a mixture of diastereomeric epoxides (15) (63% yield).¹⁴ Pinacol rearrangement of the mixture (BF₃·Et₂0, 23°C, 15 min)¹⁵ afforded the known^{13,16} 2-methylcyclotridecanone (16) (78% yield).¹⁷ Bayer-Villager oxidation of 16 according to the literature procedure of Kaiser and Lamparsky (CH₃CO₃H, BF₃·Et₂0, CHCHĨ₃, 23°C, 62% yield)¹³ completed the total synthesis of (±)-13-methyltridecanolide.

We are currently investigating the reactivity of the unique "1,3 doubly activated" π -allyls (2) with one and two equivalents of carbon nucleophiles in the presence of phosphine ligands.

ACKNOWLEDGEMENT: The authors would like to thank the Donors of the Petroleum Research Fund (#14629 - GI), administered by the American Chemical Society, Marquette University, and Wesleyan University for financial support of this research. Acknowledgement is also due to Johnson-Matthey, Inc. for generous donations of palladium chloride.

REFERENCES AND NOTES

- 1. (a) W.A. Donaldson, J. Organomet. Chem., 269 (1984) C25.
- (b) W.A. Donaldson, Organometallics, manuscript submitted.
- T.A. Albright, P.R. Clemens, R.P. Hughes, D.E. Hunton, and L.D. Margerum, J. Am. Chem. Soc., 2. 104 (1982) 5369.
- 3. S. Arora and P. Binger, Synthesis, (1974) 801.
- 4. B.M. Trost and J. Vercauteren, Tetrahedron Lett., (1985) 131.
- 5. X. Lu and Y. Haung, J. Organometal. Chem., 268 (1984) 185.
- (a) H. Christ and R. Huttel, Angew. Chem., Int. Ed. Engl., 2 (1962) 626;
 (b) R. Huttel and P. Koch, Chem. Ber., 101 (1968) 1043. 6.
- 7. T.A. Schenach and F.F. Caserio, Jr., J. Organometal. Chem., 18 (1969) P17.
- 8. The cleavage of alkyl substituted π -allyls is known to afford the corresponding olefins (Ref, 6)
- The cleavage of (11a) (n=7) previously has been reported to afford 1-methylcycloheptene 9 (76% yield, Ref. 6ã).
- (a) R.D. Rieke, A.V. Kavaliunas, L.D. Rhyne, and D.J.J. Fraser, J. Am. Chem. Soc., 101 (1979) 10. 246; (b) Y. Inoue, J. Yamashita, and H. Hashimoto, Synthesis, (1984) 244; (c) J. Powell and B.L. Shaw, J. Chem. soc. (A), (1968) 774; (d) E.O. Fischer and G. Burger, Z. Naturforsch. B., 16 (1961) 702.
 A. Streitwieser, "Solvolytic Displacement Reactions," McGraw-Hill: New York, N.Y., 1962,
- 11. p. 79 ff.
- 12. We have previously shown this type of solvolysis for (3-chloro-3-phenyl-2-methylenecycloheptyl) palladium chloride dimer under neutral conditions (Ref. 1a).
- 13.
- 14.
- R. Kaiser and D. Lamparsky, *Helv. Chim. Acta.*, 67 (1978) 2671. (15): bp 102°C, 0.30 mm Hg(Kugelrohr); IR (cm⁻¹, film) 2975 s, 2850 s, 1470 m, 1270 w, 920 m; 60 MHz ⁻H NMR (CDCl₃) δ 2.8(m), 2.0(m), 1.3(br s), 1.28(s). B.N. Blackett, J.M. Coxon, M.P. Hartshorn, B.L.J. Jackson, and C.N. Muir, *Tetrahedron*, 25 15. (1969) 1479.
- 16. J.E. McMurry, M.G. Silvestri, M.P. Fleming, T.Hoz and M.W. Grayston, J. Org. Chem., 43 (1978) 3249.
- (1978) 3249. (16): bp 104-110°C, 0.30mm Hg(Kugelrohr); IR(cm⁻¹, film)1710; 200 MHz ¹H NMR (CDC1₃) δ 2.42 (ddd, J=4.0, 9.2, 16.4 Hz, 1H), 2.42(dq, J=3.2, 7.2 Hz, 1H, CHCH₃), 2.34(ddd, J=4.0, 7.2, 16.4 Hz, 1H), 1.8-1.1(m,20H), 1.04(d, J=7.2 Hz, 3H, CH₃); 15 MHz ¹³C(¹H) NMR (CDC1₃) δ 17. 215.52, 46.26, 40.21, 32.91, 26.62, 26.34, 26.13, 25.65, 25.58, 25.00, 24.39 22.68, 17.00, 14.04.
- 18. C.J. Pouchert and J.R. Campbell, "Aldrich Library of NMR Spectra", Aldrich Chemical Co: Milwaukee, WI, 1974, Vol. I, p. 40.
- 7-Methoxy-l-methylcycloheptene was prepared from 2-methylcycloheptenone via reduction (LiAlH₄, Et₂0, 81% yield) and methylation (NaH, CH₃I, THF, 24h, 80% yield). ¹H NMR (CDCl₃) δ 5.6 (m,1H); 3.7(m,1H); 3.3(s,3H); 2.2-0.8(complex multiplets, 11H). 19.
- N.L. Allinger and N.A. Pamphilis, J. Org. Chem. 38, (1973) 316; T. Sato, K. Maemoto, and A. 20. Kodha, J. Chem. Soc., Chem. Comm., (1981) 1116.
- 2-methyl-methylenecycloheptane was prepared from 2-methylcycloheptanone via Wittig olefination (Ph_3P=CH_2, Et_2O, 24h, 45% yield). ¹H NMR(CDCl_3) δ 4.7 (s, 2H); 2.3-1.0(n, 11H); 1.05 21. (d, J=6 Hz, 3H).
- P. Brun and B. Waegell, Tetrahedron, 32 (1976) 1125. 22.
- 23.
- 24.
- A.L.J. Beckwith and G. Moad, J. Chem. Soc., Perkin Trans. 2, (1975) 1726.
 E.W. Garbisch, Jr., J. Am. Chem. Soc., 86, (1964) 5561.
 S.N. Moorthy, R. Vaidyanathaswamy, and D. Devaprabhakora, Synthesis (1975) 194. 25.
- 26. P. Adlercreutz and G. Magnusson, Acta, Chem. Scand., B34 (1980)647.

(Received in USA 20 May 1985)